Twin paradox
In physics, the twin paradox is a thought experiment in special relativity, in which a twin makes a journey into space in a high-speed rocket and returns home to find he has aged less than his identical twin who stayed on Earth. This result appears puzzling because each twin sees the other twin as traveling, and so, according to a naive application of time dilation, each should paradoxically find the other to have aged more slowly. In fact, the result is not a paradox in the true sense, since it can be resolved within the standard framework of special relativity. The effect has been verified experimentally using measurements of precise clocks flown in airplanes[1] and satellites.Starting with Paul Langevin in 1911, there have been numerous explanations of this paradox, many based upon there being no contradiction because there is no symmetry—only one twin has undergone acceleration and deceleration, thus differentiating the two cases. One version of the asymmetry argument made by Max von Laue in 1913 is that the traveling twin uses two inertial frames: one on the way up and the other on the way down. So switching frames is the cause of the difference, not acceleration.
n his famous work on special relativity in 1905, Albert Einstein predicted that when two clocks were brought together and synchronized, and then one was moved away and brought back, the clock which had undergone the traveling would be found to be lagging behind the clock which had stayed put.[A 1] Einstein considered this to be a natural consequence of special relativity, not a paradox as some suggested, and in 1911, he restated and elaborated on this result in the below form (with physicist Robert Resnick's comments following Einstein's):[A 2][4]
The standard textbook approach treats the twin paradox as a straightforward application of special relativity. Here the Earth and the ship are not in a symmetrical relationship: the ship has a turnaround in which it undergoes non-inertial motion, while the Earth has no such turnaround. Since there is no symmetry, it is not paradoxical if one twin is younger than the other. Nevertheless it is still useful to show that special relativity is self-consistent, and how the calculation is done from the standpoint of the traveling twin.
Special relativity does not claim that all observers are equivalent, only that all observers at rest in inertial reference frames are equivalent. But the space ship jumps frames (accelerates) when it performs a U-turn. In contrast, the twin who stays home remains in the same inertial frame for the whole duration of his brother's flight. No accelerating or decelerating forces apply to the homebound twin.
0 comments:
Post a Comment